Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury.
نویسندگان
چکیده
OBJECTIVES The present study aimed at the analysis of release patterns of neurobiochemical markers of brain damage (neuron specific enolase (NSE) and protein S-100B) in patients with traumatic brain injury and their predictive value with respect to the short and long term neuropsychological outcome. METHODS Serial NSE and S-100B concentrations were analysed in blood samples taken at the first, second, and third day after traumatic brain injury. In 69 patients who fulfilled the inclusion criteria (no history of neurological or psychiatric disorder or alcohol or drug dependency, blood sampling according to the scheduled time scale, aged between 16 and 65 years) standardised neurological examinations and qualitative and quantitative evaluation of CT were performed. Comprehensive neuropsychological assessment was performed in 39 subjects 2 weeks after admission and in 29 subjects at a 6 month follow up examination. RESULTS Most patients presented with minor head injuries (GCS>/=13) at the time of admission. Six months later most patients were fully independent in activities of daily living. Two thirds of the patients, however, still had neuropsychological dysfunction. Patients with short and long term neuropsychological disorders had significantly higher NSE and S-100B serum concentrations and a significantly longer lasting release of both markers. A comparative analysis of the predictive value of clinical, neuroradiological, and biochemical data showed initial S-100B values above 140 ng/l to have the highest predictive power. CONCLUSIONS The analysis of post-traumatic release patterns of neurobiochemical markers of brain damage might help to identify patients with traumatic brain injury who run a risk of long term neuropsychological dysfunction.
منابع مشابه
Relationship between Quality of Life after Traumatic Brain Injury and Demographic Characteristics in a Three-Year Follow-Up
Background and purpose: Quality of life among traumatic brain injury patients is of great importance in having more effective treatment. This study aimed at investigating the relationship between quality of life after traumatic brain injury and demographic characteristics. Materials and methods: In this cohort study, the statistical population included 409 patients with traumatic brain injury...
متن کاملRole of Propolis on Oxidative Stress in Fish Brain
Introduction: Cypermethrin causes its neurotoxic effect through voltage-dependent sodium channels and integral protein ATPases in the neuronal membrane. Brain and nerve damage are often associated with low residual level of pesticides. In vitro and in vivo studies have also shown that pesticides cause free radical-mediated tissue damage in brain. Propolis has antioxidant properties. The main ch...
متن کاملO14: Application of Neural Stem Cells Derived from Human Meningioma in Traumatic Brain Injury
Traumatic brain injury is considered as one of the main causes of morbidity and mortality worldwide. Apart from primary mechanical injury, Secondary injuries due to inflammation and apoptosis result in great neuronal damage. Current treatments are not able to regenerate the damaged part and prevent future sequels. Using human stem cells with self-assembling scaffolds may be promising in treatme...
متن کاملP 5: The Effect of Previous Endurance Exercise in Traumatic Brain Injury
Introduction: It has been suggested physical exercise exerts neuroprotection in traumatic brain injury (TBI). However little information is available about the effect of endurance exercise on brain edema, inflammation and oxidant activity in diffuse TBI. Therefore, we investigated the prophylaxis effect of endurance training against oxidative damage, inflammation and brain edema assoc...
متن کاملMelatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury
Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurology, neurosurgery, and psychiatry
دوره 70 1 شماره
صفحات -
تاریخ انتشار 2001